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Abstract—With the rapid development of the intelligent sensing
and the prompt growing industrial safety demands, human
behavior recognition has received a great deal of attentions in
industrial informatics. To deploy an utmost scalable, flexible,
and robust human behavior recognition system, we need both
innovative sensing electronics and suitable intelligence algorithms.
Wireless sensor networks (WSNs) open a novel way for human
behavior recognition, because the heavy computation can be
immediately transferred to a network server. In this paper, a new
scheme for human behavior recognition on WSNs is proposed,
which transmits activities’ signals compressed by Hamming
compressed sensing to the network server and conducts behavior
recognition through a collaboration between a new dimension
reduction algorithm termed rank preserving discriminant anal-
ysis (RPDA) and a nearest neighbor classifier. RPDA encodes
local rank information of within-class samples and discriminative
information of the between-class under the framework of Patch
Alignment Framework. Experiments are conducted on the SCUT
Naturalistic 3D Acceleration-based Activity (SCUT NAA) dataset
and demonstrate the effectiveness of RPDA for human behavior
recognition.

Index Terms—Discriminant analysis, human behavior recogni-
tion, rank preserving, wireless sensor networks (WSNs).

I. INTRODUCTION

H UMAN behavior recognition is a complex issue, spans
many disciplines, and receives intensive attentions in in-

dustrial informatics. The basic steps involve sensing signal ac-
quisition, information processing and pattern classification. The
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development of sensing electronics and intelligent algorithms
results in innovations, efficiencies, and cost savings in many
areas [80]. In recent years, a dozen of effective methods have
been proposed to automatically recognize human behavior and
benefits the industrial informatics. We can simply group these
methods into two categories: computer vision-based and ac-
celerometer-based systems.
Many computer vision-based human behavior analysis sys-

tems have been developed over the past decades [13], [27], [28],
[42], [46], [52], [55], [56], [70], [75]. This kind of systems can
be accomplished by the several important steps [3], [18], which
are object detection, object segmentation, feature extraction and
classification. Representative works are listed below. Thurau
[62] utilized histogram of oriented gradient (HOG) descriptors
to represent actions. Kellokumpu et al. [29] introduced the dy-
namic local binary pattern (LBP) descriptor. Shao et al. [56]
compared representative feature descriptors, such as HOG-HOF
[41] and LBP-TOP [76]. Niebles et al. [51] proposed an unsu-
pervised learning based topic model for human activity classi-
fication. In contrast to unsupervised learning algorithms, super-
vised learning, such as support vector machines (SVM) [21],
[40], [64], conditional random fields (CRFs) [58] and Adaboost
[19], can effectively exploit the label information to improve ac-
curacy of recognition. Bian et al. [7] proposed the transfer topic
model (TTM) to solve the problem of the amount of training
samples is insufficient. Vision-based human behavior analysis
systems cannot perform well for industrial environment, be-
cause these systems are sensitive to lighting conditions.
Accelerometer-based physical activity recognition [24], [32],

[43], [53] is an important and exciting alternative, which has
been receiving increasing attention in recent years in industrial
informatics. It investigates the use of acceleration signals from
the accelerometer attached to the human body so as to analyze
and classify daily physical activities such as walking, running,
and standing. The progress in physical activity recognition is
also meaningful to many disciplines and applications such as
health monitoring, context-awareness, and smart surveillance.
In terms of accelerometer-based physical activity recognition,
it has to be decided how many accelerometers should be placed
on a human body.
In earlier studies, several accelerometers were attached to a

human body, which made the tester feel uncomfortable [32]. To
improve this, researchers tried to recognize the physical activ-
ities with only one accelerometer [24], [53]. It is worth noting
that there are three commonly used features in accelerometer-
based human behavior recognition, including fast Fourier trans-
form (FFT) coefficients [6], DCT coefficients [72], and time-
domain feature [6]. It has been demonstrated that, with FFT
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features, a satisfactory recognition rate can be achieved in ac-
celerometer-based physical activity recognition. This result may
derive from the fact that people are performing some regular
movements when they are walking, running, and jumping. FFT
coefficients can capture the frequency information of the cyclic
movements, and thus the discriminative information of the ac-
tivities is contained in the FFT coefficients.
Multifunctional wireless sensors [2], [9], [31], [36], [39],

[47], [48], [60], [65], which have achieved a huge success,
boost the concept of wireless sensor networks (WSNs) and at-
tract researchers who work on human behavior recognition for
industrial informatics. For example, Ghasemzadeh et al. [22]
presented a scheme of classification model to recognize human
activities by utilizing body-worn inertial sensor networks. A
large-scale WSNs based on ZigBee protocol, is widely used
in industrial monitoring [50]. It is a low-consumption device
and has the capability to sense the variation information (e.g.,
temperature, pressure, and revolution speed) in a reliable way.
WSN-based ZigBee protocol can be used in the application of
human behavior recognition, because of the following reasons:
1) it has low power consumption, and thus we can control the
size of body-worn sensing module; 2) the sensing modules
build network flexibly and rapidly, since the protocol brings
about the nature of self-organization and self-configuration;
and 3) it has a relatively low cost of the sensing module.
However, increasing network size causes a wide range of is-

sues, e.g., data transmission cost and network lifetime [9], [12].
Furthermore, given limited computational resource in WSNs,
it is impossible to accomplish human behavior recognition di-
rectly. The success of compressed sensing [10], [17] opens a
door to effectively and efficiently compress physical informa-
tion, and thus we consider transmitting compressed data to the
network server where the behavior features will be extracted
and the activities will be recognized. However, classical com-
pressive sensing algorithms require polynomial time [11] for
signal reconstruction. It is substantially expensive for WSNs.
Hamming compressed sensing (HCS) [79] is more suitable for
WSNs, it can fast recover a digit signal from the quantization of
its few measurements, because it has linear recovery time.
After obtaining the digital signals, we need intelligent algo-

rithms for classification [26], [71]. Since the digital signal is of
high dimensionality, we prefer dimension reduction for signal
preprocessing to avoid the over-fitting problem. The dimension
reduction results in a succinct yet effective representation of
a sample in the original high-dimensional space. Many effec-
tive dimension reduction methods have been proposed over the
past few decades [5], [20], [23], [59], [63]. In this paper, we
introduce the rank order information to improve discriminant
learning for human behavior recognition and present a new di-
mension reduction scheme termed rank preserving discriminant
analysis (RPDA).
Based on the above descriptions, precisely recognizing

human behaviors captured by one 3-D accelerometer becomes
to be reality through the following steps: 1) utilizing HCS to
compress the accelerometer signal, and then transmitting the
compressed data to the network server via WSNs; 2) utilizing
HCS to decode the compressed accelerometer signal in the net-

work server; 3) training the RPDA projection matrix by using a
small number of labeled samples; and 4) classifying the RPDA
projected samples by using the nearest neighbor classifier, and
5) returning the recognition results to the wireless sensor.
Fig. 1 shows the architecture of the proposed human be-

havior recognition on wireless sensor networks. To collect
activity data, the client terminal can be comprised primarily
by an accelerometer, microprocessor and ZigBee transceiver
module. The bandwidth of ZigBee is suit for the data of 3-D ac-
celeration-based activity compressed by Hamming compressed
sensing (HCS). The main computing process of the human
behavior recognition is actually provided by Network server,
including HCS decoding, training RPDA projection matrix by
using a small number of labeled samples stored in Network
server, and classifying the RPDA projected samples by using
the nearest neighbor classifier.
The main contribution of this paper is the newly developed

RPDA for human behavior recognition. HCS is a general infor-
mation compression technique, which helps to reduce the time
delay of transmission and is not tied to the proposed RPDA.
Given the limited page length, we will not detail the other parts
which are easy to implement based on the references cited in
this paper.
The remainder of this paper is organized as follows. In

Section II, related works on dimension reduction are re-
viewed which are important for human behavior recognition
and experiment section. We detail the newly proposed Rank
Preserving Discriminant Analysis in Section III. Section IV
shows the experimental results on the SCUT Naturalistic 3-D
Acceleration-based Activity (SCUT NAA) dataset [72]. Fi-
nally, concluding remarks and suggestions for future work are
presented in Section V.

II. RELATED WORK

Dimension reduction algorithms can be simply grouped into
two categories: unsupervised and supervised learning algo-
rithms. In unsupervised learning, the class label information
is unavailable. Principal component analysis (PCA) [25], [35]
is the most representative unsupervised dimension reduction
algorithm. It provides a roadmap for efficient relevant infor-
mation extracting from the high-dimensional data space by
reconstructing Gaussian distributed data through maximizing
the trace of the total scatter. This simple, unsupervised and
parametric method has helped the researches in various fields
from neuroscience to computer vision, such as, image analysis,
facial expression recognition [57], [73], and data compression
[69], because of its simplicity.
Laplacian eigenmaps (LEs) [5], which is a geometrically mo-

tivated algorithm, not only avoid the limitation of the number of
projection vectors naturally, but also consider the nonlinearity
of the data distribution. LE preserves the local geometry infor-
mation in order to uncover the intrinsic geometrical structure of
the original high-dimensional data by building a graph model
which encodes the neighborhood information. Therefore, LE
is an efficient nonlinear dimension reduction method. Locality
preserving projections (LPP) [23] is the linear approximation
of LE. Though LPP is a linear dimension reduction algorithm,
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Fig. 1. Human behavior recognition on WSNs. This scheme contains the following five components: 1) using HCS to compress the acceleration signal and
transmit the compressed signal to network sever via WSNs; 2) using HCS to decode the compressed signal on the server; 3) training Rank Preserving Discriminant
Analysis projection matrix by using a small number of labeled samples; 4) classifying the RPDA projected samples by using the nearest neighbor classifier; and
5) returning the recognition results to the wireless sensor.

it approximates the nonlinear problem properly by partially pre-
serving the local geometry information.
In supervised learning, a training sample consists of an input

instance and the associated class label. Linear discriminant anal-
ysis (LDA) [20] is themost representative supervised dimension
reduction algorithm. It seeks to find a projection direction which
minimizes the trace of the within-class scatter matrix and max-
imizes the trace of the between-class scatter matrix, simultane-
ously. In general, LDA performs excellently under the circum-
stances that different classes have an equal within-class scatter.
Nevertheless, LDA suffers from the two main drawbacks. First,
it is a globally linear dimension reduction algorithm and fails
to discover the nonlinear structure hidden in the high-dimen-
sional space. Second, to use LDA, small sample size (SSS) is a
big problem [61]. LDA needs a large number of training sam-
ples to acquire a good model. A dozen of algorithms have been
proposed to deal with the SSS problem of LDA, such as PCA
plus LDA [4] and direct LDA (DLDA) [74]. However, they fail
to consider the local geometry of within-class samples and the
discriminative information in selected subspace.
Although existing dimension reduction algorithms [49] have

been applied to human behavior recognition, there is still room
to improve the classification precision. Recently, it has been ob-
served that the Euclidean metric suffers from the concentration
of measure phenomenon [16], since the difference of distances
between pairs of high-dimensional samples are fairly indistin-
guishable. Extensive numerical experiments [15], [30] verified

the ranking of neighbors is important. Transferring distance in-
formation to rank orders benefits to recover the intrinsic data
properties.
Nonmatric multidimensional scaling (MDS) [78] aims to

preserve rank order information by matching distances among
all data in the low-dimensional space with distances among
all data in the original high-dimensional space. In addition,
data-driven high-dimensional scaling (DD-HDS) [45] was
presented to improve the performance of the representation of
high-dimensional data. Recently, Lespinats et al. [44] proposed
RankVisu to preserve small dissimilarities as possible, since
small rank orders are more important.
In contrast to the classical spectral analysis-based dimension

reduction, we introduce rank order information to human be-
havior recognition and present a new dimension reduction al-
gorithm, RPDA. It differs from the aforementioned dimension
reduction in considering the influence of rank order informa-
tion in within-class and between-class. By introducing a penal-
ized factor of distances that takes the concentration of measure
phenomenon [16] into account, it preserves as much as possible
the local rank order information of the within-class formed local
patch. In addition, it is remarkable that the process of dimension
reduction always companies variations in the original distribu-
tion. Therefore, we model the process which extracts the local
discriminative information of the between-class by intention-
ally ignoring the rank order information. In order to understand
RPDA, we fabricate the local rank information of within-class
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samples and the discriminative information of the between-class
under the framework of patch alignment framework (PAF) [78].

III. RPDA

Here, we present a new supervised dimension reduction algo-
rithm, RPDA. The concentration of measure phenomenon [16]
has significant impact on the performance of dimension reduc-
tion tools, because the differences of distances between pairs
of high-dimensional samples are fairly indistinguishable [1].
A direct solution is to preserve the rank order information of
within-class samples [15] in the process of transforming sam-
ples from the high-dimensional space to a low-dimensional sub-
space.
It is insufficient to consider only the rank order information,

because the process of dimension reduction always companies
variations in the original distribution [14]. Therefore, we de-
sign a discriminant information extracted way that ignores the
between-class samples rank order information. This strategy
is feasible for high-dimensional data to selectively shrink or
stretch a suitable manifold. Similar to other spectral analysis
abased dimension reduction algorithms, it can be built under
Patch Alignment Framework (PAF) [78], because PAF of-
fers a platform to manipulate the local rank information of
within-class samples and the discriminative information of the
between-class samples. Under PAF, all these algorithms can be
reasonably divided into part optimization and whole alignment
two stages.
The training samples of the discriminative dimension reduc-

tion possess class labels. Given a training set in the high-di-
mensional space , i.e., ,
and each sample has the corresponding class label .
The objective is to find a projection matrix to lin-
early map samples from the high-dimensional space to a
low-dimensional subspace , with , i.e.,

.

A. Part Optimization for RPDA

For a given labeled sample , we can find its closest
within-class samples and closest be-
tween-class samples to form a local patch

.
In addition, we define that is the rank of the sample
for the sample . By using RPDA, our objective is

to achieve a new low-dimensional representation
for each local

patch, where the between-class distances will be as large as
possible and the within-class rank order information will be
preserved as much as possible.
Fig. 2 illustrates the process of part optimization in the situ-

ation when and . It shows that in the projected
subspace (right-hand side of Fig. 2), the intra-class rank order
information of sample (i.e., the rank of red triangles from
the yellow triangle) is preserved whereas the distances between
and the samples from other classes (blue circle and green

square) are large.

Fig. 2. Process of part optimization. The yellow triangle is a labeled sample.
The red triangles are closest within-class samples. Blue circles and
green squares are the closest between-class samples.

Fig. 3. Procedure of features extraction. The first row represents the raw data
collected from the accelerometer. The -axis contains values described sam-
pling points and the sampling interval is 0.01 s. The -axis contains values de-
scribed acceleration attribute. For example, means 0 g,
and each 26 units means 1 g, where 9.8 m/s . The second row is FFT
feature of 512 points from the raw data. The third row is 945 dimensional FFT
feature.

For each local patch in the low-dimensional subspace, we
maximize the margin that is the sum of the distances between
and samples between-class as

(1)

By using a rank matrix, we can easily obtain the rank order in-
formation. However, the rank matrix , in which the entry
is the rank of the sample with respect to the sample , is gen-
erally not symmetric. This is because the sample is the th
nearest neighbor of , but not vice versa. Therefore, it cannot
be directly used in PAF. In contrast, the distance matrix of the
local patch is symmetric. Therefore, we introduce a penalized
factor in the distance matrix to well solve the problem arose by
the concentration of measure phenomenon, and we have

(2)
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where is the penalized factor to emphasize the distinction
between small and large distances in the original distribution
with a large and a small weighting, respectively. As expected,
the small distances in original space will cause more heavily
penalization in low-dimensional subspace.
Motivated by the success of LE [5] and the effective neigh-

borhood relations preservation by heat kernel, we propose a pe-
nalized factor as

if

otherwise
(3)

Since the local patch can be regarded as approximately
linear [54], we can encode both the rank order information and
the discriminative information to achieve the entire objective
function of part optimization

(4)

by combining (1) and (2) via a tradeoff parameter where
is a tradeoff parameter to integrate the contributions of

intra-class samples and those of the between-class samples in
the part optimization stage.
We further deduce (4) to

(5)

where is the trace operator,

,

, ,
, and

.

B. Whole Alignment for RPDA

By using a sample selection matrix, the coordinate of the
low-dimensional representation is selected from the globe
coordinates , i.e.,

(6)

where is the selection matrix. Let
be the index set, and then each entry

of the selection matrix is defined by

if
else.

(7)

According to (6), the part optimization (5) can be rewritten as

(8)

We have the whole alignment by summing over all the part op-
timizations defined in (8) to achieve

(9)

Considering simplicity, is imposed on (9) to
uniquely determine the orthogonal projection matrix ac-
cording to , where is an identity matrix of size

. Thus, (9) is transformed to

(10)

By utilizing the Lagrange’s multiplier method [78], we trans-
form (10) to a generalized eigenvalue problem. The projection
matrix is given by eigenvectors associated with smallest
eigenvalues of . In addition, PCA is recommended to be
applied to the original high-dimensional data for removing the
noise.

C. Alternative Penalized Factors

As a penalized factor, (3) is very flexible. In general, the se-
lection of parameter is in directly proportional to the average
distances of pairwise within-class samples. To avoid the selec-
tion of parameter , we can construct a penalized factor as

if

otherwise.
(11)

This form is the cosine similarity of the two samples and very
classical in information retrieval [33].
In addition, we utilize a sigmoid-like weighting function [45]

as an alternative to improve the performance of rank preserving:

if

otherwise
(12)

where is a Gaussian variable probability density func-
tion parametrized in terms of a mean and a standard deviation
.
Similar to DD-HDS [45], the mean and the standard devi-

ation can be estimated by

(13)

(14)

where we have imposed the mean and the std operation upon
the distribution of distances between all pairwise samples in
the high-dimensional space . Thus, by modeling the differ-
ence of distances between small and large distances, the above
weighting function preserves the intra-class rank order infor-
mation. The parameter is a user-defined parameter and can be
chosen in the range of [0,1]. To be clear, the larger is selected
and the effect of rank preserving will be more significant that



818 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 10, NO. 1, FEBRUARY 2014

affects the performance of dimension reduction. In addition, the
parameter can be selected by cross-validation. In real appli-
cations, the penalized factor defined in (11) is the most conve-
nient scheme. We can avoid the annoying step of parameter se-
lection. However, penalized factors defined in (3) and (12) are
more flexible for rank preserving. Based on the above discus-
sions, we summarize RPDA in Algorithm 1.
In RPDA, we first build part optimizations for all training

samples by calculating the matrix according to (5). Then,
the matrixes are summed into the whole alignment matrix
according to (9). In addition, to avoid the selection of parameter
, penalized factor equation (3) can be replaced by (11) or (12).

Algorithm 1: Rank Preserving Discriminant Analysis

Input: Training set ; Class
label : dimension of the reduced space.

Output: Orthogonal projection matrix

Step 1) (optional) Use PCA projection matrix to
reconstruct the original training set ;

Step 2) Part optimization: Construct patches for the
training set according to (1) and (2), and calculate
the matrix for each patch by using (5);

Step 3) Whole alignment: Sum all the patches in a global
coordinate over all samples, and compute the whole
alignment objective function (9);

Step 4) Compute the projection matrix whose
column vectors are the eigenvectors of
associated with smallest eigenvalues.

Step 5) Return the final projection matrix
.

D. Time Complexity Analysis

Given training samples in a dimensional space, the time
complexity of RPDA consists of two parts, including the whole
alignment matrix calculation and the eigenvalue calculation.
The first part is , where is the number
of closest with-class samples and is the number of closest be-
tween-class samples. When , we have .
The second part is , where is dimension after di-
mension reduction. Thus, the whole time complexity of RPDA
is .

IV. EXPERIMENTAL RESULTS

Here, the experiments of human behavior recognition are
conducted on the SCUT Naturalistic 3-D Acceleration-based
Activity (SCUT NAA) dataset [72] to demonstrate the perfor-
mance of the proposed RPDA. It contains 1278 samples of ten
object categories. Since HCS affects the subsequent dimension
reduction algorithm, we set , where is the number
of 1-bit measurements, and is the size of a sequence of
sample. This setting performs well in our system. In this paper,
one commonly used feature in accelerometer based activity

TABLE I
DEFINITION OF THE TEN KINDS OF BEHAVIOR

recognition, the FFT coefficients [6], was extracted. The per-
formance is measured by using the average accuracy for each
class and the confusion matrix between the ground truth label
information and the most likely inferred label information. The
confusion matrix can contribute to get a better understanding of
where the approach is going wrong. Details of the experimental
setup and baseline models are given below.

A. SCUT NAA Dataset

The SCUT NAA dataset [72] is the first publicly available
3-D acceleration-based human behavior dataset. By utilizing
one tri-axial accelerometer located on a fixed position (three al-
ternatives include the waist belt, the trousers pocket, and the
shirt pocket), we collected 1278 samples from 44 subjects (34
males and 10 females) naturally. All 44 subjects were students
at South China University of Technology. Note that these col-
lege students were enrolled from different cities in China, the
average age and the variance are 21.2 and 0.7, respectively. In
addition, ten types of human behaviors were selected. Table I
shows that these human behaviors include a range of common
activities involving industrial production, e.g., light intensity ac-
tivities such as sitting, moderate intensity activities such as step
walking, and vigorous activities such as jumping and running.
Therefore, the SCUT NAA dataset is suitable for human be-
havior research in industrial informatics.
Note that the data acquisition subjects to some conditions and

the numbers of samples in different class are different, e.g., the
class of “cycling” has only 30 samples, since only 30 peoples
can ride. Inspired by the leave-one-out cross validation, obser-
vations of a single subject from the original dataset were using
as the test data, and the remaining samples are used for model
training. The training set was used to learn the orthogonal pro-
jectionmatrix. The test set was used for performance evaluation.
Therefore, the SCUT NAA dataset can be divided into 44 splits.

B. FFT Descriptor

FFT features were extracted from the raw acceleration data
corresponding to each axis. The size of the window used in the
process of feature extraction was 512 points, with 256 sample
points overlapped between consecutive windows. For each
sliding window, the first 64 FFT coefficients were retained,
respectively, while the first coefficient corresponding to the
current component was abandoned. The raw data corresponding
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Fig. 4. Average recognition rate versus dimension reduction on the test sets.

to each activity contain 4096 sample points, which leads to a
945-dimensional FFT feature.

C. Baselines and Performance Measures

Here, the performance of RPDAwas evaluated by comparing
with four representative algorithms, including PCA, LDA, LPP
and SLPP [8]. According the penalized factors defined in
(3), (11), and (12), we named the proposed algorithm RPDA1,
RPDA2, and RPDA3, respectively. These algorithms have their
own merits. PCA and LPP are unsupervised algorithms. LDA
and SLPP are supervised algorithms. Before we conduct LDA,
LPP, SLPP and RPDA, the first stage is the PCA projection. In
the PCA stage, dimensions are retained to ensure that
within-scatter matrix in LDA [38] is nonsingular, because
the number of the original features is much larger than the
number of training samples. In order to accelerate the learning
process, we also conduct PCA step to retain dimensions
in LPP, SLPP, and RPDA.
The Nearest Neighbor (NN) rule was used in classification

in the test stage. The performance is measured by the average
accuracy for each class on the FFT features. To better under-
stand different approaches, the confusion matrices between the
ground truth class label and the most likely inferred label infor-
mation are reported.

D. Experimental Results and Analysis

The average recognition rate is computed, which is varied
with the number of dimensionalities. The result is shown in
Fig. 4. Table II reports the best average accuracy and the cor-
responding dimensionalities of all of the algorithms on the test
sets of all splits. It can be observed that RPDA outperforms the
others in terms of recognition rate. In addition, RPDA1 clas-
sification confusion matrix was shown in Fig. 7. It shows: 1)
“walking” is confused with “walking quickly” and “walking
backwards” frequently; 2) “downstairs” is similar to “upstairs”;
and 3) “cycling” is easy to be classified as “step walking.”

TABLE II
BEST AVERAGE RECOGNITION RATES OF SEVEN ALGORITHMS

ON THE FFT FEATURES

Fig. 5 shows the confusion matrices between neighborhood
ranks in the original space and the dimensionality reduced sub-
spaces (obtained by different dimension reduction algorithms)
on all training sets. Fig. 6 shows the average percentage of per-
fectly preserved the top six within-class samples neighborhood
ranks and the top nine within-class samples neighborhood ranks
on all training sets. A higher value of a matrix entry corresponds
to a darker square in the figure. From the viewpoint of rank pre-
serving, the perfect dimension reduction algorithm generates a
black diagonal matrix. PCA outperforms the other algorithms
in terms of rank order information preserving. LDA cannot cap-
ture the nearest neighborhood rank order information. It is worth
noting that RPDA algorithm outperforms the other algorithms
in terms of rank order information preserving, except for PCA.
The experimental results discovered the following two points.
1) PCA and LDA are the global linear dimension reduction
algorithms. In our experiment, PCA outperforms the other
algorithms in terms of rank order information preserving.
This is because PCA considers preserving rank orders in-
formation globally and manifold learning algorithms con-
sider preserving rank order information locally, the distri-
bution of training samples benefits PCA. However, PCA
preserves the within-class rank order information as well
as the between-class rank. Therefore, it is not suitable for
classification tasks. LDA preserves the discriminative in-
formation but ignores the rank order information. In addi-
tion, the between-class scatter matrix is of rank ,
where is the number of class, and we can obtain no more
than project vectors. These two issues caused that
the performance of LDA performs more poorly than PCA
in terms of classification accuracy when the subspace di-
mensionality increases.

2) LPP and SLPP are manifold learning algorithms and pre-
serve the rank order information in a local patch. They are
not as good as RPDA and PCA in terms of rank order infor-
mation preserving shown in Fig. 6. In addition, they tend to
preserve the rank order information of between-class inten-
tionally, and thus they cannot model the discriminative in-
formation precisely. Therefore, they performed not as well
as other algorithms.
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Fig. 5. Confusion matrix between neighborhood ranks in the original high-dimensional space and the subspace learned by a particular dimension reduction algo-
rithm on all training sets. The -axis contains values described ranks in original space. The -axis contains values described ranks in output space. A higher value
of a matrix entry corresponds to a darker square in the figure and a perfect dimension reduction from the viewpoint of rank order information preserving results
in a black diagonal.

Fig. 6. Percentage of perfectly preserved the within-class samples neighbor-
hood ranks on all training sets.

Fig. 7. RPDA1 classification confusion matrix for all testing sets.

TABLE III
BEST AVERAGE RECOGNITION RATES OF SEVEN ALGORITHMS

ON THE FFT FEATURES

(SVM classifier)

TABLE IV
BEST AVERAGE TRAINING TIME OF FIVE ALGORITHMS

ON THE FFT FEATURES

These results show the balance of the within-class nearest
neighborhood ranks and the between-class nearest neighbor-
hood ranks is important for improving the human behavior
recognition accuracy.
In addition, we have tested the SVM classifier with the RBF

kernel under the same experimental setting. It can be observed
that the best accuracy achieved by RPDA1 and RPDA2 in
Table III. Comparing with Table II, the SVM classifier im-
proved the accuracy of recognition compared with the NN
classifier. In addition, Table IV reports average training time
of dimension reduction algorithms, including PCA, LDA and
RPDA, as well as RPDA’s variants. We conduct experiments on
an Intel Core 2 Duo T9600 2.8GHz computer with a 4-Gbyte
memory.
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V. CONCLUDING REMARKS

In this paper, a new manifold learning based dimension
reduction algorithm, Rank Preserving Discriminant Anal-
ysis (RPDA), was presented under the framework of patch
alignment. Technically, rank orders do not encounter the
concentration of measure phenomenon. Therefore, three type
penalized factors were developed to encode the rank order
information of the within-class samples. The between-class
samples rank order information was ignored while the discrim-
inative model of the between-class samples was constructed.
Comparing to the classical unsupervised dimension reduction
algorithms (e.g. PCA and LPP) and representative supervised
dimension reduction algorithms (e.g. LDA and SLPP), RPDA
has shown many competitive and attractive properties. In
human behavior recognition for industrial informatics, RPDA
is superior to the above algorithms in terms of recognition rate.
RPDA has some important parameters that affect the perfor-

mance of the subsequent classification. Automatic selection of
the parameters is important and should be investigated in a very
careful way. Unlabeled samples are helpful for enhancing the
classification performance. In application of human behavior
recognition, it is practical to collect a large number of unlabeled
samples. The sample distribution should be reckoned as a prior
to improve the classification accuracy. Therefore, a semisuper-
vised extension RPDA should be carefully considered. These
two issues are important for industrial informatics.
In the future, we will apply the proposed RPDA to other ap-

plications, e.g., scene classification [37], [77] and multimedia
tagging [34], [66]–[68]. Since robust visual features will cause
the dimension of the image representation to be high, dimen-
sion reduction results in a succinct and effective representation
for subsequent steps.
In addition, WSNs can be well applied to human behavior

recognition, this utilization has some limitations. First, it is lim-
ited to power supply, because our WSNs are powered by bat-
teries in considering mobility. Second, it cannot monitor a large
area, because Zigbee is a short-range wireless transfer protocol.
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